Posted on

1030. Matrix Cells in Distance Order

You are given four integers rowcolsrCenter, and cCenter. There is a rows x cols matrix and you are on the cell with the coordinates (rCenter, cCenter).

Return the coordinates of all cells in the matrix, sorted by their distance from (rCenter, cCenter) from the smallest distance to the largest distance. You may return the answer in any order that satisfies this condition.

The distance between two cells (r<sub>1</sub>, c<sub>1</sub>) and (r<sub>2</sub>, c<sub>2</sub>) is |r<sub>1</sub> - r<sub>2</sub>| + |c<sub>1</sub> - c<sub>2</sub>|.

Example 1:
Input: rows = 1, cols = 2, rCenter = 0, cCenter = 0
Output: [[0,0],[0,1]]
Explanation: The distances from (0, 0) to other cells are: [0,1]

Example 2:
Input: rows = 2, cols = 2, rCenter = 0, cCenter = 1
Output: [[0,1],[0,0],[1,1],[1,0]]
Explanation: The distances from (0, 1) to other cells are: [0,1,1,2]
The answer [[0,1],[1,1],[0,0],[1,0]] would also be accepted as correct.

Example 3:
Input: rows = 2, cols = 3, rCenter = 1, cCenter = 2
Output: [[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]
Explanation: The distances from (1, 2) to other cells are: [0,1,1,2,2,3]
There are other answers that would also be accepted as correct, such as [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]].

class Solution {
public:

    vector<vector<int>> allCellsDistOrder(int rows, int cols, int rCenter, int cCenter) {

        queue<pair<int,int>> q;        
        vector<vector<int>> result;

        vector<vector<bool>> visited( rows , vector<bool>(cols, false));        
        vector<pair<int, int>> directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

        q.push({rCenter, cCenter});
        visited[rCenter][cCenter] = true;

        while( !q.empty() ){
            int size = q.size();
            while(size > 0){
                auto [currentRow, currentCol] = q.front();              
                result.push_back({currentRow, currentCol});

                q.pop();
                for (auto [dr, dc] : directions) {
                    int newRow = currentRow + dr;
                    int newCol = currentCol + dc;


                    if( newRow >= 0 && newRow < rows && newCol >=0 && newCol < cols 
                        && !visited[newRow][newCol]){                        
                        q.push({newRow,newCol});
                        visited[newRow][newCol] = true;
                    }
                }
                size--;
            }

        }
        return result;
        
    }
};
Posted on

90% of CS graduates can’t figure this out

Someone important on X posted:

https://x.com/vikhyatk/status/1873033432705712304

i have a very simple question i ask during phone screens: print each level of a tree on a separate line. 90% of CS grad candidates just can’t do it. someone needs to investigate these universities.

half the replies are saying i’m trolling because no one asks questions this simple. the other half are saying it’s a retarded leetcode question, they never have to use trees irl, why is it even relevant because ChatGPT can do it etc.

Solution with Boost Library

#include <boost/property_tree/ptree.hpp>
#include <iostream>
#include <string>
#include <queue>
using namespace std;

void levelOrder(const boost::property_tree::ptree& tree) {
    std::queue<boost::property_tree::ptree> q;
    q.push(tree);

    while (!q.empty()) {
        int levelSize = q.size();
        while (levelSize > 0) {
            boost::property_tree::ptree current = q.front();
            q.pop();

            // Print the value at the current level
            auto val = current.get_value<std::string>("");
            if (val != "")
                std::cout << current.get_value<std::string>("")<<" ";

            // Add children nodes to the queue
            for (const auto& node : current) {
                q.push(node.second);
            }
            --levelSize;
        }
        std::cout << std::endl;  // Newline after printing one level
    }
}

int main() {
    // Create a Boost property tree
    boost::property_tree::ptree tree;

    // Insert elements to mimic a binary tree
    tree.put("root.value", "10");

    // Left child
    tree.put("root.left.value", "5");
    tree.put("root.left.left.value", "3");
    tree.put("root.left.right.value", "7");

    // Right child
    tree.put("root.right.value", "15");
    tree.put("root.right.right.value", "20");

    levelOrder(tree);

    return 0;
}

So I wanted to try out using Boost with CLion. What a nightmare. First the issue of using a flatpak install ruins everything when it comes to integrating with the system.

Second using a property tree was a bad idea. I should have went with a graph. Since the original post on X was talking about to solution with a graphic of a binary tree, I tried the property_tree in boost and I didn’t like the output of the tree still, nor the key value pair structure of it.

I will follow up later with a Breath First Search on a Undirected Graph from Boost library next time.

Posted on

Count Ways To Build Good Strings

Given the integers zeroonelow, and high, we can construct a string by starting with an empty string, and then at each step perform either of the following:

  • Append the character '0' zero times.
  • Append the character '1' one times.

This can be performed any number of times.

good string is a string constructed by the above process having a length between low and high (inclusive).

Return the number of different good strings that can be constructed satisfying these properties. Since the answer can be large, return it modulo 10<sup>9</sup> + 7.

Input: low = 3, high = 3, zero = 1, one = 1
Output: 8
Explanation: 
One possible valid good string is "011". 
It can be constructed as follows: "" -> "0" -> "01" -> "011". 
All binary strings from "000" to "111" are good strings in this example.

Input: low = 2, high = 3, zero = 1, one = 2
Output: 5
Explanation: The good strings are "00", "11", "000", "110", and "011".

Solution: fastest one is using tabulation dynamic programming technique.

    int countGoodStrings(int low, int high, int zero, int one) {
        int sum[100001];
        sum[0] = 1;
        for (int i = 1; i <= high; i++)
        {
            long long sumCur = 0;
            if (i >= zero)
                sumCur += sum[i-zero];
            if (i >= one)
                sumCur += sum[i-one];
            if (sumCur > 0x3000000000000000ll)
                sumCur %= 1000000007;
            sum[i] = sumCur % 1000000007;
        }

        long long sumTotal = 0;
        for (int i = low; i <= high; i++)
            sumTotal += sum[i];
        return sumTotal % 1000000007;
    }

Way slower approach is to use a map in your code for memoization, and a recursive DFS method.

class Solution {
public:
    int countGoodStrings(int low, int high, int zero, int one) {
        map<int, int> dp;
        long mod = pow(10,9) +7;    
        function<int(int)> dfs = [&](int length) -> int{
            
            if( length > high ) return 0;

            if(dp.find(length) != dp.end() )
                return dp[length];

            int count = ( length >= low) ? 1 : 0;
            count = (count + dfs(length + zero)) % mod;
            count = (count + dfs(length + one)) % mod;
            
            return dp[length] = count;
        };

        return dfs(0);    
    }
};

Posted on

Set Matrix Zeros

class Solution {
  public:
    void setMatrixZeroes(vector<vector<int>> &mat) {
        int n = mat.size();
        int m = mat[0].size();
    
        bool firstRowHasZero = false;
        bool firstColHasZero = false;
    
        // Check if the first row has any zero
        for (int j = 0; j < m; j++) {
            if (mat[0][j] == 0) {
                firstRowHasZero = true;
                break;
            }
        }
    
        // Check if the first column has any zero
        for (int i = 0; i < n; i++) {
            if (mat[i][0] == 0) {
                firstColHasZero = true;
                break;
            }
        }
    
        // Use the first row and column to mark zeros
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {
                if (mat[i][j] == 0) {
                    mat[i][0] = 0;
                    mat[0][j] = 0;
                }
            }
        }
    
        // Update the matrix based on the markers
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {
                if (mat[i][0] == 0 || mat[0][j] == 0) {
                    mat[i][j] = 0;
                }
            }
        }
    
        // Update the first row if needed
        if (firstRowHasZero) {
            for (int j = 0; j < m; j++) {
                mat[0][j] = 0;
            }
        }
    
        // Update the first column if needed
        if (firstColHasZero) {
            for (int i = 0; i < n; i++) {
                mat[i][0] = 0;
            }
        }
        
    }
};

The idea here is using the first row and column as a Dynamic Programming table to mark which rows and columns need to be zeroed out.
That being done, then first column and row itself is updated at the end.

Posted on

Zigzag string conversion solution in C++

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this

Input: s = "PAYPALISHIRING", numRows = 3 Output: "PAHNAPLSIIGYIR"
P   A   H   N
A P L S I I G
Y   I   R

Input: s = "PAYPALISHIRING", numRows = 4 Output: "PINALSIGYAHRPI"
P     I    N
A   L S  I G
Y A   H R
P     I

Solution

#include <iostream>
#include <string>
using namespace std;

class Solution {
public:
    string convert(string s, int numRows) {
        int n = s.size();
        if (n == 1 || numRows < 2 || n <= numRows) return s;
        
        string ans;
        
        for (int i = 0; i < numRows; i++) {
            int j = i;
            ans.push_back(s[i]); // First character of the row
            int down = 2 * (numRows - 1 - i); // Downward step size
            int up = 2 * i; // Upward step size
            
            if (up == 0 && down == 0) return s; // If no movement, just return the string
            
            while (j < n) {
                j += down;
                if (j < n && down > 0) ans.push_back(s[j]);
                
                j += up;
                if (j < n && up > 0) ans.push_back(s[j]);
            }
        }
        
        return ans;
    }
};

int main() {
    Solution solution;
    string s = "PAYPALISHIRING"; // Example input
    int numRows = 3; // Example row count
    
    string result = solution.convert(s, numRows);
    cout << "Zigzag Conversion: " << result << endl; // Output the result
    return 0;
}
Posted on

Search Sorted Matrix Solution in C++

The idea here is to implement binary search after discovering the correct row.


#include <bits/stdc++.h>
using namespace std;



class Solution {
  public:
  
  
    // Function to search a given number in row-column sorted matrix.
    bool searchMatrix(vector<vector<int>> &mat, int x) {
        // code here
        vector<int>*row = nullptr;
        int rows = mat.size();
        int cols = mat[0].size();
        
        for( int i = 0; i < rows; i++ ){
            if( mat[i][0] <= x && mat[i][cols-1] >= x ){
                row = &(mat[i]);
                break;
            }
        }
        
        if( row == nullptr ) return false;
        
        auto binarySearch = [row, x]( int low, int high ) -> bool{
            
            while( low <= high ){
                int mid = low + (high-low)/2;
            
                if( (*row)[mid] == x ){
                    return true;
                }else if((*row)[mid] < x ){
                    low =  mid + 1;
                } else {
                    high = mid - 1;
                }
                
            }
            
            return false;
            
        };   
        
        return binarySearch(0, cols -1 );
    }
};

Posted on

LeetCode 543 Diameter of a Binary Tree in C++

Given the root of a binary tree, return the length of the diameter of the tree.

The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

The length of a path between two nodes is represented by the number of edges between them.

Example 1:
Input: root = [1,2,3,4,5] Output: 3
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].


Example 2:
Input: root = [1,2] Output: 1

Constraints:

-100 <= Node.val <= 100

The number of nodes in the tree is in the range [1, 104].

Solution in C++ with a test case:


#include <iostream>
#include <algorithm>
using namespace std;

// Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    int result;
    int dfs(TreeNode* root) {
        if (root == nullptr) return 0;
        int left = dfs(root->left);
        int right = dfs(root->right);
        result = max(result, left + right);
        return max(left, right) + 1;
    }

    int diameterOfBinaryTree(TreeNode* root) {
        result = 0;
        dfs(root);
        return result;
    }
};

// Helper function to create a tree
TreeNode* createTree() {
    /*
        Example tree:
                1
               / \
              2   3
             / \
            4   5
    */
    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);
    return root;
}

int main() {
    // Create a sample binary tree
    TreeNode* root = createTree();

    // Create a Solution object
    Solution solution;

    // Call the diameterOfBinaryTree function
    int diameter = solution.diameterOfBinaryTree(root);

    // Output the result
    cout << "Diameter of the binary tree: " << diameter << endl;

    // Clean up memory (optional but good practice)
    delete root->left->left;
    delete root->left->right;
    delete root->left;
    delete root->right;
    delete root;

    return 0;
}
Posted on

Letter Combinations of a phone number

Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent. Return the answer in any order.

A mapping of digits to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.

Example 1:

Input: digits = "23"
Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"]

Example 2:

Input: digits = ""
Output: []

Example 3:

Input: digits = "2"
Output: ["a","b","c"]

Java Solution

class Solution {
     public List<String> letterCombinations(String digits) {
        if (digits == null || digits.length() == 0) {
            return new ArrayList<>();
        }
        Map<Character, String> digitToLetters = new HashMap<>();
        digitToLetters.put('2', "abc");
        digitToLetters.put('3', "def");
        digitToLetters.put('4', "ghi");
        digitToLetters.put('5', "jkl");
        digitToLetters.put('6', "mno");
        digitToLetters.put('7', "pqrs");
        digitToLetters.put('8', "tuv");
        digitToLetters.put('9', "wxyz");

        List<String> result = new ArrayList<>();
        backtrack(digits, 0, new StringBuilder(), result, digitToLetters);
        return result;
    }

    private void backtrack(String digits, int index, StringBuilder path, List<String> result, Map<Character, String> digitToLetters) {
        if (index == digits.length()) {
            result.add(path.toString());
            return;
        }

        char digit = digits.charAt(index);
        String letters = digitToLetters.get(digit);
        for (char letter : letters.toCharArray()) {
            path.append(letter);
            backtrack(digits, index + 1, path, result, digitToLetters);
            path.deleteCharAt(path.length() - 1);
        }
    }
}

C++ Solution

//
// Created by robert on 12/20/24.
//
#include <iostream>
#include <vector>
#include <unordered_map>

using namespace std;
void backtrack(string & digits, const int index, string & current, vector<string> & result, const unordered_map<char,string> & map) {
if (digits.length() == index) {
result.push_back(current);
return;
}
char digit = digits[index];
string letters = map.find(digit)->second;
for( char letter : letters ) {
current.push_back(letter);
backtrack( digits, index+1, current, result, map );
current.pop_back();
}

}
vector<string> letterCombinations(string digits) {
vector<string> result;
string current;

if (digits.empty()) return result;

unordered_map<char, string> map;

map.insert(make_pair('2', "abc"));
map.insert(make_pair('3', "def"));
map.insert(make_pair('4', "ghi"));
map.insert(make_pair('5', "jkl"));
map.insert(make_pair('6', "mno"));
map.insert(make_pair('7', "pqrs"));
map.insert(make_pair('8', "tuv"));
map.insert(make_pair('9', "wxyz"));


backtrack(digits, 0, current, result, map);
return result;

}

int main(){
vector<string> result = letterCombinations("23");
for (const auto & i : result) {
cout << i << endl;
}
}
Posted on

 Max Chunks To Make Sorted

You are given an integer array arr of length n that represents a permutation of the integers in the range [0, n - 1].

We split arr into some number of chunks (i.e., partitions), and individually sort each chunk. After concatenating them, the result should equal the sorted array.

Return the largest number of chunks we can make to sort the array.

Example 1:

Input: arr = [4,3,2,1,0]
Output: 1
Explanation:
Splitting into two or more chunks will not return the required result.
For example, splitting into [4, 3], [2, 1, 0] will result in [3, 4, 0, 1, 2], which isn't sorted.

Example 2:

Input: arr = [1,0,2,3,4]
Output: 4
Explanation:
We can split into two chunks, such as [1, 0], [2, 3, 4].
However, splitting into [1, 0], [2], [3], [4] is the highest number of chunks possible.

Solution

The core idea behind the solution is to identify contiguous subsequences within the array A where the elements form a consecutive sequence starting from 0.

We iterate through the array, keeping track of the current chunk’s starting index. As long as the current element matches its index, we continue iterating. Once we encounter an element that doesn’t match its index, we’ve reached the end of the current chunk. We then append this chunk to a list of chunks and start the process again from the next element.

//
// Created by robert on 12/18/24.
//
#include <vector>
#include <iostream>

using namespace std;

int maxChunksToSorted(const vector<int>& arr) {
int chunks = 0, i =0;;

while(i < arr.size()){
int start = i;
int max_val = arr[start];
while( i < arr.size() && max_val >= i ){
max_val = max(max_val, arr[i]);
++i;
}
++chunks;
}

return chunks;
}

vector<vector<int>> findChunks(const vector<int>& arr) {
int i =0;
vector<vector<int>> chunks;
while(i < arr.size()){
int start = i;
int max_val = arr[start];
while( i < arr.size() && max_val >= i ){
max_val = max(max_val, arr[i]);
++i;
}
chunks.emplace_back(vector<int>(arr.begin() + start, arr.begin() + i));
}

return chunks;
}

void printChunks(const vector<int>& arr) {
vector<vector<int> > chunks = findChunks(arr);
cout << "[";
for (size_t i = 0; i < chunks.size(); ++i) {
cout << "[";
for (size_t j = 0; j < chunks[i].size(); ++j) {
cout << chunks[i][j];
if (j != chunks[i].size() - 1) cout << ",";
}
cout << "]";
if (i != chunks.size() - 1) cout << ",";
}
cout << "]" << endl;

}

int main(int argc, char *argv[]) {
cout << maxChunksToSorted({4,3,2,1,0}) << endl;
cout << maxChunksToSorted({1,0,2,3,4}) << endl;
cout << maxChunksToSorted({1,0, 2,3,4,5}) << endl;

printChunks({1, 0, 2, 3, 4});
printChunks({4, 3, 1, 2, 0});
printChunks({1, 0, 3, 2, 4});
printChunks({ 1, 2, 3, 4, 5, 0});
printChunks({0, 1, 2, 3, 10, 11, 12});
return 0;
}

/home/robert/CLionProjects/untitled/maxChunksToSorted
1
4
5
[[1,0],[2],[3],[4]]
[[4,3,1,2,0]]
[[1,0],[3,2],[4]]
[[1,2,3,4,5,0]]
[[0],[1],[2],[3],[10,11,12]]

Process finished with exit code 0

Posted on

Final Prices With a Special Discount in a Shop

You are given an integer array prices where prices[i] is the price of the i<sup>th</sup> item in a shop.

There is a special discount for items in the shop. If you buy the i<sup>th</sup> item, then you will receive a discount equivalent to prices[j] where j is the minimum index such that j > i and prices[j] <= prices[i]. Otherwise, you will not receive any discount at all.

Return an integer array answer where answer[i] is the final price you will pay for the i<sup>th</sup> item of the shop, considering the special discount.

Example 1:

Input: prices = [8,4,6,2,3]
Output: [4,2,4,2,3]
Explanation: 
For item 0 with price[0]=8 you will receive a discount equivalent to prices[1]=4, therefore, the final price you will pay is 8 - 4 = 4.
For item 1 with price[1]=4 you will receive a discount equivalent to prices[3]=2, therefore, the final price you will pay is 4 - 2 = 2.
For item 2 with price[2]=6 you will receive a discount equivalent to prices[3]=2, therefore, the final price you will pay is 6 - 2 = 4.
For items 3 and 4 you will not receive any discount at all.

Example 2:

Input: prices = [1,2,3,4,5]
Output: [1,2,3,4,5]
Explanation: In this case, for all items, you will not receive any discount at all.

Example 3:

Input: prices = [10,1,1,6]
Output: [9,0,1,6]

// Monotonic stack to keep track of indices
// While the stack is not empty and the current price is less than or equal
// to the price at the index stored at the top of the stack
// Apply the discount
// Push the current index onto the stack
// Return the modified answer vector

class Solution {
public:
    // vector<int> finalPrices(vector<int>& prices) {
    //     uint16_t size =  prices.size();
        
    //     for( uint16_t i = 0; i < size; i++ ){
    //         for( uint16_t j = i+1; j < size; j++ ){
    //             if(prices[i]>=prices[j]){
    //                 prices[i]-= prices[j];
    //                 break;
    //             }
    //         }
    //     }
        
    //     return prices;
    // }

    
    vector<int> finalPrices(vector<int>& prices) {
        
        stack<int> st; 
        
        for (int i = 0; i < prices.size(); i++) {
  
            while (!st.empty() && prices[i] <= prices[st.top()]) {
                int index = st.top(); 
                st.pop();
                prices[index] -= prices[i]; 
            }
            st.push(i); 
        }
        
        return prices; 
    }

};

Explanation:

  1. Monotonic Stack:
    • We use a stack to keep track of indices where the discount is yet to be applied.
    • The stack is monotonic decreasing, meaning it stores indices of prices in decreasing order of their values.
  2. Efficient Discount Calculation:
    • For each price, check the stack:
      • If the current price is less than or equal to the price at the top of the stack, apply the discount for the index at the top of the stack.
      • Remove that index from the stack since the discount has been applied.
    • Push the current index onto the stack.
  3. Time Complexity:
    • Each element is pushed onto the stack once and popped from the stack once, resulting in O(n)O(n)O(n) time complexity.

Example Execution:

For prices = [8, 4, 6, 2, 3]:

  • Initialization: answer = [8, 4, 6, 2, 3], stack = [].
  • Iteration 1 (i = 0): stack = [0].
  • Iteration 2 (i = 1):
    • prices[1] = 4 <= prices[stack.top()] = 8.
    • Apply discount: answer[0] = 8 - 4 = 4. Pop stack. stack = [].
    • Push i = 1: stack = [1].
  • Iteration 3 (i = 2): stack = [1, 2] (no discount applied yet).
  • Iteration 4 (i = 3):
    • prices[3] = 2 <= prices[stack.top()] = 6.
    • Apply discount: answer[2] = 6 - 2 = 4. Pop stack. stack = [1].
    • prices[3] = 2 <= prices[stack.top()] = 4.
    • Apply discount: answer[1] = 4 - 2 = 2. Pop stack. stack = [].
    • Push i = 3: stack = [3].
  • Iteration 5 (i = 4): stack = [3, 4] (no discount applied yet).

Final answer = [4, 2, 4, 2, 3].

Space Complexity:

  • The stack stores at most nnn indices, so the space complexity is O(n)O(n)O(n).